The University of Texas at Arlington

Lecture 5 PIC I/O and LCD Control

CSE 3442/5442 Embedded Systems I

Based heavily on slides by Dr. Gergely Záruba and Dr. Roger Walker

Digital Input/Output

- Only two states
 - ON / OFF
 - HIGH / LOW
 - 1 / 0
 - 5V / 0V
 - 3.3V / 0V
 - etc.

Chapter 4 – PIC I/O PORT PROGRAMMING

- Ports are not only used for simple I/O, but also can be used other functions
 - ADC (analog-to-digital conversion)
 - Timers
 - Oscillator Input
 - Interrupts
 - Serial communication
 - Capturing and Generating PWM Signals
 - Programming the PIC

PIC18F452 Pin Diagram

4

Pin 5: RA3/AN3/Vref+

						PORTA is a bi-directional I/O port.	
RA0/AN0	2	3	19				
RA0				I/O	TTL	Digital I/O.	
AN0				I	Analog	Analog input 0.	
RA1/AN1	3	4	20				
RA1				I/O	TTL	Digital I/O.	
AN1				I	Analog	Analog input 1.	
RA2/AN2/VREF-	4	5	21				
RA2				I/O	TTL	Digital I/O.	
AN2				I	Analog	Analog input 2.	
VREF-				I	Analog	A/D Reference Voltage (Low) input.	
RA3/AN3/VREF+	5	6	22				
RA3				I/O	TTL	Digital I/O.	
AN3					Analog	Analog input 3.	
VREF+				I	Analog	A/D Reference Voltage (High) input.	
RA4/T0CKI	6	7	23				
RA4				1/0	ST/OD	Digital I/O. Open drain when configured as output.	
				1	SI	limer0 external clock input.	
RA5/AN4/SS/LVDIN	7	8	24				
RA5				I/O	TTL	Digital I/O.	
AN4					Analog	Analog input 4.	
SS					SI	SPI Slave Select Input.	
					Analog	Low voltage Detect Input. 5	
RA6						(See the OSC2/CLKO/RA6 pin.)	

PIC18F452 (40 Pins) has 5 ports, other Family Members Can Have More or Less

Table 4-1: Number of Ports in PIC18 Family Members

Pins	18-pin	28-pin	40-pin	64-pin	80-pin	
Chip	PIC18F1220	PIC18F2220	PIC18F458	PIC18F6525	PIC18F8525	
Port A	Х	Х	Х	Х	Х	
Port B	Х	Х	Х	Х	Х	
Port C		Х	X	Х	Х	
Port D			X	Х	Х	
Port E			Х	Х	Х	
Port F				Х	Х	
Port G				Х	Х	
Port H	8			Х	Х	
Port J				Х	Х	
Port K			5 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		X	
Port L					Х	
Contractory of the second						

Note: X indicates that the port is available.

PIC18F452 Pin Diagram 5 Ports

- For example, the PIC18F452
 - Port A has 7 pins
 - Ports B, C, and D each have 8 pins
 - Port E has only 3 pins

→34 total digital IO pins

- Each port has three SFRs associated
 PORTx
 - TRISx (TRIState)
 - LATx (LATch)

SFRs in the File Registers

SFRs in the File Registers

SFRs in the File Registers

CSE@UTA

F80h	PORTA
F81h	PORTB
F82h	PORTC
F83h	PORTD
F84h	PORTE
F85h	
F86h	
F87h	
F88h	
F89h	LATA
F8Ah	LATB
F8Bh	LATC
F8Ch	LATD
F8Dh	LATE
F8Eh	
F8Fh	
F90h	
F91h	
F92h	TRISA
F93h	TRISB
F94h	TRISC
F95h	TRISD
F96h	TRISE
F97h	
F98h	
F99h	
F9Ah	
F9Bh	
F9Ch	
F9Dh	PIE1
F9Eh	PIR1
F9Fh	IPR1

FAOh	PIE2
FA1h	PIR2
F A2h	IPR2
FA3h	
F A4h	
FAGh	
FA6h	
FA7h	
FABh	
FA9h	
FAAh	
FABh	RCSTA
FACh	TXSTA
FADh	TXREG
FAEh	RCREG
FAFh	SPBRG
FBOh	
F B1h	T3C ON
FB2h	TMR3L
FBGh	TMR3H
F B4h	
FB5h	
FB6h	
F 87 h	
FB8h	
F B9h	
FBAh	CCP2CON
FBBh	CCPR2L
FBCh	CCPR2H
FBDh	CCP1CON
FBEh	CCPR1L
FBFh	CCPR1H

FCOh	
FC1h	ADC ON1
FC2h	ADCONO
FСЗһ	ADRESL
FC4h	ADRESH
FC5h	SSPC ON2
FC6h	SSPC ON1
FC7h	SSPSTAT
F C8h	SSPADD
F C9h	SSPBUF
FCAh	T2CON
FCBh	PR2
FCCh	TMR2
FCDh	T1CON
FCEh	TMR 1L
FCFh	TMR1H
FDOh	RCON
FD1h	WDTCON
F D2h	LVDCON
FDЗh	OSCCON
F D4h	
FD5h	TOCON
FD6h	TMROL
F D7h	TMROH
F D8h	STATUS
F D9h	FSR2L
FDAh	FSR2H
FDBh	PLUSW2
FDCh	PREINC2
FDDh	POSTDEC2
FDEh	POSTINC2
FDFh	IN DF2

FEOh	BSR	
FE1h	FSR1L	
FE2h	F SR 1H	
FE3h	PLUSW1	×
FE4h	PREINC1	×
FE5h	POSTDEC1	×
FE6h	POSTINC1	×
FE7h	IND F1	*
FE8h	WREG	
FE9h	FSROL	
FEAh	FSROH	
FEBh	PLUSWO	×
FECh	PREINCO	×
FEDh	POSTDECO	×
FEEh	POSTINCO	×
FEFh	IND FO	×
F FOh	IN TCON3	
FF1h	IN TCON2	
F F2h	INTCON	
F F 3h	PRODL	
FF4h	PRODH	
F F5h	TABLAT	
F F6h	TBLPTRL	
F F7h	TBLPTRH	
F F8h	TBLPTRU	
F F9h	PCL	
FF Ah	PCLATH	
FF Bh	PCLATU	
FFCh	STKPTR	
FFDh	TOSL	
FFEh	TOSH	
FFFh	TOSU	

TRISx SFR

- Each of the Ports A-E in the PIC18F452 can be used for input or output
 - TRISx is used solely for the purpose of making a given port an input or output port
 - TRISx bit = 0 → PORTx bit is an OUTPUT

Can now <u>write to</u> the PORTx bit(s)

• **TRISx bit = 1** \rightarrow PORTx bit is an **INPUT**

Can now <u>read in</u> from the PORTx bit(s)

- Can set I/O bit-by-bit or whole TRIS byte at once

PORTx and LATx SFRs

- PORTx
 - For reading input coming into the PIC
 - Digital High (1) or Low (0)
 - For writing output from the PIC
 - Writing a 1 \rightarrow pin is High, 0 \rightarrow pin is Low
- LATx
 - For <u>writing</u> output from the PIC
 - Writing a 1 \rightarrow pin is High, 0 \rightarrow pin is Low
- Point of the Latch??

PORTB Example

TABLE 9-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
LATB	LATB Da	ata Output Re	egister						xxxx xxxx	uuuu uuuu
TRISB	PORTB	Data Directio	on Register						1111 1111	1111 1111
INTCON	GIE/ GIEH	PEIE/ GIEL	TMROIE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	—	TMR0IP	_	RBIP	1111 -1-1	1111 -1-1
INTCON3	INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF	11-0 0-00	11-0 0-00

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

N and P Transistors (MOSFET Logic)

N and P Transistors (MOSFET Logic)

N and P Transistors (MOSFET Logic)

Outputting a 0

Figure 4-3. Outputting (Writing) 0 to a Pin in the PIC18

MikroElektronika (img source)

http://learn.mikroe.com/ebooks/picbasicprogramming/chapter/input-output-ports/

PIC18F452 Pin Diagram 5 Ports

PORT/TRIS Functionality is Mapped to the SFRs

22

Addresses of SFR, PORTx, TRISx (TRIState), and LATx (LATch)

FBFh

FBEh

FBDh

FBCh FBBh FBAh

FB9h

FB8h

FB7h

FB6h

FB5h FB4h

FB3h

FB2h

FB1h FB0h

FAFh

FAEh

FADh

FACh

FABh

FAAh

FA9h FA8h FA7h

FA6h

FA5h

FA4h

FA3h FA2h

FA1h

FA0h

TABLE 4-1: SPECIAL FUNCTION REGISTER MAP

Name

∆ddress

FFFh	TOSU	FDFh
FFEh	TOSH	FDEh
FFDh	TOSL	FDDh
FFCh	STKPTR	FDCh
FFBh	PCLATU	FDBh
FFAh	PCLATH	FDAh
FF9h	PCL	FD9h
FF8h	TBLPTRU	FD8h
FF7h	TBLPTRH	FD7h
FF6h	TBLPTRL	FD6h
FF5h	TABLAT	FD5h
FF4h	PRODH	FD4h
FF3h	PRODL	FD3h
FF2h	INTCON	FD2h
FF1h	INTCON2	FD1h
FF0h	INTCON3	FD0h
FEFh	INDF0 ⁽³⁾	FCFh
FEEh	POSTINC0 ⁽³⁾	FCEh
FEDh	POSTDEC0(3)	FCDh
FECh	PREINC0 ⁽³⁾	FCCh
FEBh	PLUSW0(3)	FCBh
FEAh	FSR0H	FCAh
FE9h	FSR0L	FC9h
FE8h	WREG	FC8h
FE7h	INDF1 ⁽³⁾	FC7h
FE6h	POSTINC1 ⁽³⁾	FC6h
FE5h	POSTDEC1 ⁽³⁾	FC5h
FE4h	PREINC1 ⁽³⁾	FC4h
FE3h	PLUSW1 ⁽³⁾	FC3h
FE2h	FSR1H	FC2h
FE1h	FSR1L	FC1h
FE0h	BSR	FC0h

Address	Name	Address
FDFh	INDF2 ⁽³⁾	FBF
FDEh	POSTINC2 ⁽³⁾	FBE
FDDh	POSTDEC2(3)	FBD
FDCh	PREINC2 ⁽³⁾	FBC
FDBh	PLUSW2 ⁽³⁾	FBB
FDAh	FSR2H	FBA
FD9h	FSR2L	FB9
FD8h	STATUS	FB8
FD7h	TMR0H	FB7
FD6h	TMR0L	FB6
FD5h	T0CON	FB5
FD4h	_	FB4
FD3h	OSCCON	FB3
FD2h	LVDCON	FB2
FD1h	WDTCON	FB1
FD0h	RCON	FB0
FCFh	TMR1H	FAF
FCEh	TMR1L	FAE
FCDh	T1CON	FAD
FCCh	TMR2	FAC
FCBh	PR2	FAB
FCAh	T2CON	FAA
FC9h	SSPBUF	FA9
FC8h	SSPADD	FA8
FC7h	SSPSTAT	FA7
FC6h	SSPCON1	FA6
FC5h	SSPCON2	FA5
FC4h	ADRESH	FA4
FC3h	ADRESL	FA3
FC2h	ADCON0	FA2
FC1h	ADCON1	FA1
FC0h	—	FA0

Name	A	ddress	Name		
CCPR1H		F9Fh	IPR1		
CCPR1L		F9Eh	PIR1		
CCP1CON	1	F9Dh	PIE1		
CCPR2H		F9Ch	_		
CCPR2L		F9Bh	_		
CCP2CON	1	F9Ah	_		
_		F99h	_		
_		F98h	_		
_		F97ii	_		
_		F96h	TRISE ⁽²⁾		
—		F95h	TRISD ⁽²⁾		
_		F94h	TRISC		
TMR3H		F93h	TRISB		
TMR3L		F92h	TRISA		
T3CON		F91h	_		
_		F90h	_		
SPBRG		F8Fh	_		
RCREG		F8Eh	-		
TXREG		F8Dh	LATE ⁽²⁾		
TXSTA		F8Ch	LATD ⁽²⁾		
RCSTA		F8Bh	LATC		
_		F8Ah	LATB		
EEADR		F89h	LATA		
EEDATA		F88h			
EECON2		F87h	-		
EECON1		F86h	-		
—		F85h	_		
_		F84h	PORTE ⁽²⁾		
_		F83h	PORTD ⁽²⁾		
IPR2		F82h	PORTC		
PIR2		F81h	PORTB		
PIE2		F80h	PORTA		

ISA

PORTB Example

TABLE 9-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	_
LATB	LATB Da	ata Output Re	egister	•					
TRISB	PORTB	Data Directio	on Register						N
INTCON	GIE/ GIEH	PEIE/ GIEL	TMROIE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	F45
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	18
INTCON3	INT2IP	INT1IP	—	INT2IE	INT1IE	_	INT2IF	INT1IF	ں ا
									٦

Ϊ

PORTB	EQU	0XF81	;in .H header file
TRISB	EQU	0XF93	;in .H header file
ORG 0x0	0		
MOVLW	0	;A	II 0's to WREG
MOVWF	TRISE	B ;P	ORTB is an OUTPUT
MOVLW	B'10'	101010'	
MOVWF	POR	ТВ ;∨	Vrite 1/0 to PORTB pins

PIC18F452

26

WREG

PORTB	EQU	0XF81	;in .H header file
TRISB	EQU	0XF93	;in .H header file
ORG 0x0	00		
MOVLW	0	;A	II 0's to WREG
MOVWF	TRISE	3 ;P	ORTB is an OUTPUT
MOVLW	B'10 ⁻	101010'	
MOVWF	POR	TB ;∖	Vrite 1/0 to PORTB pins

PIC18F452

27

= 0000 0000

PORTB	EQU	0XF81	;in .H header file
TRISB	EQU	0XF93	;in .H header file
ORG 0x0	00		
MOVLW	0	;A	II 0's to WREG
MOVWF	TRIS	B ;P	ORTB is an OUTPUT
MOVLW	B'10	101010'	
MOVWF	POR	TB ;\	Write 1/0 to PORTB pins

PIC18F452

28

Accessing SFRs in .ASM **PORTB as an OUTPUT**

PORTB	EQU	0XF81	;in .H header file	
TRISB	EQU	0XF93	;in .H header file	
ORG 0x0	00			
	_	_		
MOVLW	0	;A	All 0's to WREG	
MOVWF	TRIS	B :F	ORTB is an OUTPUT	
		_ ,		
	B '10	101010'		
MOVWF	POR	TB ;\	Write 1/0 to PORTB pins	

WREG	= 1010 1010
TRISB	= 0000 0000
PORTB	= ?

PORTB	EQU	0XF81	;in .H header file	
TRISB	EQU	0XF93	;in .H header file	
ORG 0x0	0			
	0	. ^		PC
	U	;A	II US to WREG	
MOVWF	TRISB	;P	ORTB is an OUTPUT	Direc
				(TRIS
MOVLW	B'101	01010'		<mark>0</mark> 40
MOVWF	PORT	B ;∖	Vrite 1/0 to PORTB pins	<mark>0</mark> 39
				0 38
				<mark>0</mark> 37
				<mark>0</mark> 36
				0.25

Accessing SFRs in .ASM **PORTB as an OUTPUT**

PORTB	EQU	0XF81	;in .H header file
TRISB	EQU	0XF93	;in .H header file
ORG 0x0	0		
	•		
MOVLW	0	;A	III 0's to WREG
MOVWF	TRIS	B ;P	ORTB is an OUTPUT
MOVLW	B'10	101010'	
MOVWF	POR	TB :\	Write 1/0 to PORTB pins

PIC18F452

28

PORTB	EQU	0XF81	;in .H header file	
TRISB	EQU	0XF93	;in .H header file	
ORG 0x0	0			
MOVLW	0	;A	II 0's to WREG	
MOVWF	TRIS	B ;P	ORTB is an OUTPUT	
MOVLW B'101010'				
MOVWF	POR	TB ;∨	Vrite 1/0 to PORTB pins	

PORTB as an **INPUT**

In order to make all the bits of PORTB an input, TRISB must be programmed by writing 1 to all the bits. In the code below, PORTB is configured first as an input port by writing all 1s to register TRISB, and then data is received from PORTB and saved in some RAM location of the file registers:

MYREG EQU 0X20 ;Program location (RAM)

MOVLW B'11111111' ;All 1's to WREG

MOVWF TRISB ;PORTB as INPUT port (1 for In)

MOVFPORTB, W;move from filereg of PORTB to WREGMOVWFMYREG;save in fileReg of MYREG

ORG 0x00

MYREG	EQU 0X2	0 ;Program location (RAM)
MOVLW MOVWF	B'1111111 TRISB	1' ;All 1's to WREG ;PORTB as INPUT port
MOVF	PORTB, W	;move from filereg of PORTB to WREG
MOVWF	MYREG	;save in fileReg of MYREG

PIC18F452

MYREG = ? WREG = ? TRISB = ? PORTB = ?

ORG 0x00

•	MYREG	EQU (0X20 ;Program location (RAM)
	MOVLW MOVWF	B'1111 TRISB	1111' ;All 1's to WREG ;PORTB as INPUT port
	MOVF	PORTB	, W ;move from filereg of PORTB to WREG
	MOVWF	MYREG	S ;save in fileReg of MYREG

MYREG = 0000 0000 (at 0x20)
WREG = ?
TRISB = ?
PORTB = ?

ORG 0x00

MYREG	EQU 0X2	0 ;Program location (RAM)
MOVLW MOVWF	B'11111111 TRISB	I' ;All 1's to WREG ;PORTB as INPUT port
MOVF	PORTB, W	;move from filereg of PORTB to WREG
MOVWF	MYREG	;save in fileReg of MYREG

MYREG	= 0000 0000 (at 0x20)
WREG	= 1111 1111
TRISB	= ?
PORTB	= ?

ORG 0x00

MYREG	EQU 0X20 ;Program location (RAM)
MOVLW MOVWF	B'11111111' ;All 1's to WREG TRISB ;PORTB as INPUT port
MOVF	PORTB, W ;move from filereg of PORTB to WREG
MOVWF	MYREG ;save in fileReg of MYREG

MYREG = 0000 0000 (at 0x20)
WREG = 1111 1111
TRISB = 1111 1111
PORTB = 1111 0000

ORG 0x00

MYREG	EQU 0X2	0 ;Program location (RAM)
MOVLW MOVWF	B'11111111 TRISB	1' ;All 1's to WREG ;PORTB as INPUT port
MOVF	PORTB, W	;move from filereg of PORTB to WREG
MOVWF	MYREG	;save in fileReg of MYREG

MYREG = 0000 0000 (at 0x20)
WREG = 1111 0000 🥿
TRISB = 1111 1111
PORTB = 1111 0000

ORG 0x00

MYREG	EQU 0X2	0 ;Program location (RAM)
MOVLW MOVWF	B'1111111 TRISB	1' ;All 1's to WREG ;PORTB as INPUT port
MOVF	PORTB, W	;move from filereg of PORTB to WREG
MOVWF	MYREG	;save in fileReg of MYREG

Register bit manipulation

- Bit set flag
 - BSF filereg, bit
- Bit clear flag
 - BCF filereg, bit
- Bit toggle flag
 BTF filereg, bit

BSF TRISB, 4

BCF PORTB, 2

- Bit test filereg skip next instruction if clear (0)
 BTFSC filereg, bit
- Bit test filereg skip next instruction if set (1)
 BTFSS filereg, bit

MPLAB Example

 <u>http://omega.uta.edu/~nbb0130/misc_files/</u> <u>Main5_1.asm</u>

Working with I/O Ports in C Whole BYTES at a Time

```
//OLD \rightarrow #include <p18F452.h>
#include <xc.h>
void main(void)
{
   unsigned char mybyte;
   TRISC = 0b11111111; //PORTC is input
   TRISB = 0b00000000; //PORTB is output
   TRISD = 0b00000000; //PORTD is output
   while(1)
   ł
        mybyte = PORTC; //load the value of PORTC
        if(mybyte < 100)
                PORTB = mybyte; //send it to PORTB is it is less than 100
        else
                PORTD = mybyte; //otherwise, send to PORTD
```


Working with I/O Ports in C Single BITS at a Time

```
//OLD \rightarrow #include <p18F452.h>
#include <xc.h>
void main(void)
{
   unsigned char mybyte;
   TRISC = 0b11111111; //PORTC is input
   TRISB = 0b00000000; //PORTB is output
   TRISBbits.RB4 = 1;
   TRISD = 0b00000000; //PORTD is output
   while(1)
   ł
         mybyte = PORTC; //load the value of PORTC
         if(mybyte < 100)
                   PORTB = mybyte; //send it to PORTB is it is less than 100
         else
                   PORTD = mybyte; //otherwise, send to PORTD
```

```
mybyte = PORTCbits.RC1;
```


Fan-out

- Current can flow in (pin at 0 level) and out (pin at 1 level) of port pins.
- This current is limited by the design of the IC.
- Fan-out is really the number of logic gates a pin can drive but is closely connected to the total current of pins.
- Arguably, for microcontrollers it is more important to remember the total current drawn (see LEDs driven in QwikFlash)

Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (Note 3) (combined)	200 mA

Example of Interfacing PIC to Components on QwikFlash

45

Example of Interfacing PIC to Components on QwikFlash

Example: Parallel Digital Output LCD Control

Driving LCD Controllers (textbook chapter 12, PICBook chapter 7)

- Liquid Crystal Displays are frequently used with microcontrollers and embedded devices
- Usually have their own controller for logic and receiving commands
- Commonly have parallel digital inputs for interfacing

 Some have serial interfaces instead (SPI, I²C, etc.)
- LCD modules usually require an initialization sequence when powered up before regular commands can be sent

- So some small wait time should be expected (ms range)

Different LCD Types

Sample Image (not a PIC)

LCD Controller

LCD Controller

LCD Common Pins

- Supply, "ground", and LCD contrast voltage
- Register Select (RS)
 - RS=0 for sending instructions (such as clear screen, or defining characters)
 - RS=1 for sending data to be displayed
- Enable (E)
 - Essentially a clock input; a high-low transition will cause the LCD to latch in the data on the data pins
- Data (D0-D7) or (D0-D3)
 - The parallel interface pins (can use all 8 or just 4)
- Read/Write (R/W)
 - Direction of I/O (if used only as a display, "grounding" this is necessary)

Connections to QwikFlash

Typical LCD Timing for Displaying (Write)

Example Initialization (Nibble Interface)

- 1. Wait 100ms to make sure own initialization has occurred
- 2. RS=0, (all commands)
- 3. 3 times: E=1,D=3,E=0, wait
- 4. 2 times: E=1,D=2,E=0, wait (set nibble iface)
- 5. E=1,D=8,E=0, wait, E=1,D=0,E=0 (two line display)
- 6. E=1,D=1,E=0, wait, E=1,D=0,E=0 (clear display)
- 7. E=1,D=0xC,E=0, wait, E=1,D=0,E=0 (Turn off cursor, turn on display)
- 8. E=1,D=1,E=0, wait (auto cursor increment)

Cursor Positioning

- All commands (RS=0) where the MSB is set are cursor positioning commands
- Row 1 begins with 0x80 (1000 0000)
- Row 2 begins with 0XC0 (1100 0000)
- Positions are counted left to right and auto increment can be enabled (no need for cursor positioning for short strings)

Special Characters

- ASCII lower 128 characters are easy to display (just send ASCII codes) with a few exceptions
- Japanese characters at codes 0xa0 to 0xff
- Eight user defined characters 0x0 to 0x7
- All command codes (RS=0) with MSBs '01' are character generating commands
- 5x8 characters are then defined by sending their bitmaps (sending 8 bytes where upper three bits are always ignored)

- LCDs (as they are displays) are a great tool for debugging embedded code
- Of course we need to assume that the microcontroller works
- Displaying variables and port statuses can be very helpful

- Textbook Ch. 4.1 and 4.2 for PIC IO examples and more details
- Textbook Ch. 12.1 for LCD details
- LCD Videos
 - <u>https://www.youtube.com/watch?v=mo4_5vG8bbU</u>
 - <u>https://www.youtube.com/watch?v=ZP0KxZI5N20</u>
 - <u>https://www.youtube.com/watch?v=85LvW1QDLLw</u>
- Start reading Chapter 7
 PIC Programming in C